

Microprocessor Supervisory Circuit in 4-Lead SC70

ADM6384

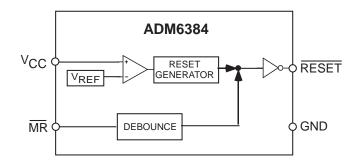
Preliminary Technical Data

FEATURES

Precision 1.8V to 5V Power Supply Monitoring 31 Reset Threshold Options: 1.58V to 5.0V Four Reset Timeouts: 1ms, 20ms, 140ms, 1120ms Manual Reset Input Reset Output Stage- Push-Pull Active-Low Guaranteed Reset Output valid to Vcc=1V Power Supply Glitch Immunity Specified Over -40°C to +125°C Temperature Range 4-Lead SC70 Package

APPLICATIONS

Microprocessor Systems Computers Controllers Intelligent Instruments Portable Equipment


GENERAL DESCRIPTION

The ADM6384 is a supervisory circuit which monitors power supply voltage levels in microprocessor-based systems. A power-on-reset signal is generated when the supply voltage rises to a preset threshold level. The ADM6384's debounced manual reset input can be used to initiate a reset by means of an external push-button or logic signal.

The part is available in a choice of the following 31 reset threshold options, from 1.58V to 5.0V. The minimum reset timeout periods are 1ms, 20ms, 140ms and 1120ms.

The ADM6384 is available in a 4-lead SC70 package and typically consumes only 7μ A, making it suitable for use in low power portable applications

FUNCTIONAL BLOCK DIAGRAM

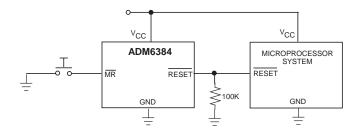


Figure 1. Typical ADM6384 Operating Circuit

Rev. PrD

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

ADM6384—SPECIFICATIONS

Table 1. V_{CC} =Full Operating Range, T_A=-40°C to 125°C, unless otherwise noted

Parameter	Min	Тур	Max	Units	Test Conditions/Comments
SUPPLY					
V _{CC} Operating Voltage Range	1		5.5	V	
Supply Current		7	13	μΑ	V _{cc} =5.5V, no load
		6	11	μA	V _{CC} =3.6V, no load
		4	7	μA	V _{cc} =2.5V, no load ¹
		3	6	μΑ	V _{CC} =1.8V, no load ¹
RESET THRESHOLD VOLTAGE					
ADM6384_50_	4.88	5.00	5.12	V	
ADM6384_49_	4.78	4.90	5.02	V	
ADM6384_48_	4.68	4.80	4.92	V	
ADM6384_47_	4.58	4.70	4.82	V	
ADM6384_46_	4.51	4.63	4.74	V	
ADM6384_45_	4.39	4.5	4.61	V	
ADM6384_44_	4.27	4.38	4.48	V	
ADM6384_43_	4.19	4.30	4.41	V	
ADM6384_42_	4.1	4.2	4.31	V	
ADM6384_41_	4.0	4.1	4.2	V	
ADM6384_40_	3.9	4.0	4.1	V	
ADM6384_39_	3.8	3.9	4.0	v	
ADM6384_38_	3.71	3.8	3.9	V	
ADM6384_37_	3.61	3.7	3.79	V	
ADM6384_36_	3.51	3.6	3.69	V	
ADM6384_35_	3.41	3.5	3.59	V	
ADM6384_34_	3.32	3.4	3.49	V	
ADM6384_33_	3.22	3.3	3.38	V	
ADM6384_32_	3.12	3.2	3.28	V	
ADM6384_31_	3.00	3.08	3.15	V	
ADM6384_30_	2.93	3.0	3.08	V	
ADM6384_29_	2.85	2.93	3.00	V	
ADM6384_28_	2.73	2.8	2.87	V	
ADM6384_27_	2.63	2.70	2.77	v	
ADM6384_26_	2.56	2.63	2.69	V	
ADM6384_25_	2.44	2.5	2.56	v	
ADM6384_24_	2.34	2.4	2.46	v	
ADM6384_23_	2.26	2.31	2.37	v	
ADM6384_22_	2.13	2.19	2.24	v	
ADM6384_17_	1.62	1.67	1.71	v	
ADM6384_16_	1.54	1.58	1.61	v	
RESET THRESHOLD TEMPERATURE COEFFICIENT	1.54	40	1.01	ppm/°C	
RESET THRESHOLD HYSTERESIS		3		mV	
RESET TIMEOUT PERIOD		5		111V	
ADM6384D1	1		2	mc	
				ms	
ADM6384D2	20		40	ms	
ADM6384D3	140		280	ms	
ADM6384D4	1120	25	2240	ms	V falling == 10>//
VCC to RESET DELAY		35		μs	V _{cc} falling at 10mV/µs
RESET Output Voltage					
VOL			0.3	V	V _{CC} >=1.0V, I _{SINK} =80µA
			0.3	V	$V_{CC} \ge 2.5V$, $I_{SINK} = 1.2mA$

Preliminary Technical Data

Parameter	Min	Тур	Мах	Units	Test Conditions/Comments
			0.4	V	V _{CC} >=4.5V, I _{SINK} =3.2mA
VOH	0.8x V _{cc}			V	Vcc>=2.5V, Isource=500µA
	0.8x Vcc			V	Vcc>=4.5V, I source=800µA
RESET Rise Time		5	25	ns	From 10% to 90% V _{CC} , C _L =5pF, V _{CC} =3.3V
MANUAL RESET INPUT					
MR Input Threshold					
VIL			0.3xVcc	V	V _{CC} <4V
			0.8	V	V _{CC} <4V
VIH	0.7xVcc			V	V _{CC} >4V
	2.4			V	V _{CC} >4V
MR Input Pulse Width	1			μs	
MR Glitch Rejection		100		ns	
MR Pull-up Resistance	32	63	100	kΩ	
MR to Reset Delay		200		ns	

 1 T_A = 25°C Only

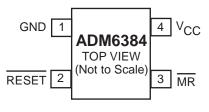

ABSOLUTE MAXIMUM RATINGS

Table 2. $T_A = 25^{\circ}C$ unless otherwise noted.

Parameter	Rating
Vcc	-0.3V to +6V
RESET	-0.3V to +6V
Output Current (RESET)	20mA
Operating Temperature Range	-40°C to +125°C
Storage Temperature Range	-65°C to +150°C
θ_{JA} Thermal Impedance, SC70	146°C/W
Lead Temperature	
Soldering (10 sec)	300°C
Vapour Phase (60 sec)	215°C
Infrared (15 sec)	220°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATIONS AND FUNCTIONAL DESCRIPTIONS

Pin Configuration

Table 3. Pin Functional Descriptions

Pin No.	Name	Description
1	GND	Ground
2	RESET	Active-Low Reset Output, which is asserted whenever V_{CC} is below the reset.threshold, V_{TH} . Push-Pull Output Stage.
3	MR	Manual Reset Input. This is an active-low input which, when forced low for at least 1 μ s, generates a reset. Features a 52k Ω internal pull-up.
4	Vcc	Power Supply Voltage being Monitored.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

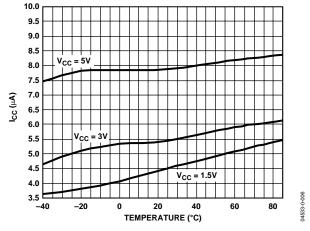


Figure 2. Supply Current vs. Temperature

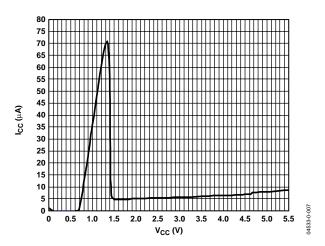


Figure 3. Supply Current vs. Supply Voltage

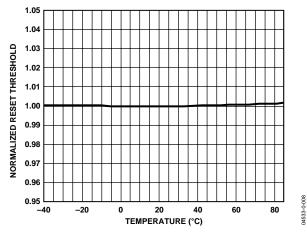
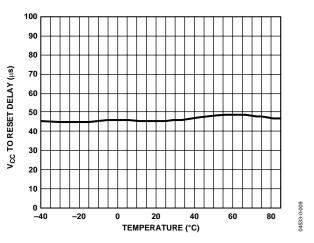



Figure 4. Normalized Reset Threshold vs. Temperature

Figure 5. V_{CC} *Falling to Reset Propagation Delay vs. Temperature*

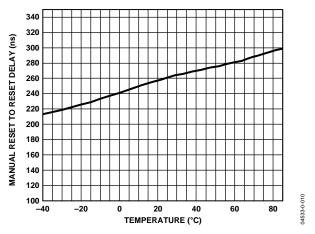


Figure 6. Manual Reset to Reset Propagation Delay vs. Temperature

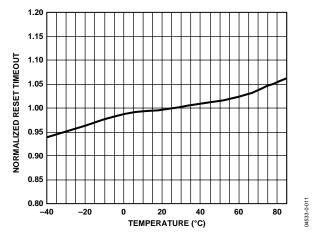


Figure 7. Normalized Reset Timeout Period vs. Temperature

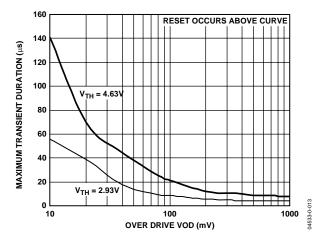


Figure 8. Maximum V_{CC} Transient Duration vs. Reset Threshold Overdrive

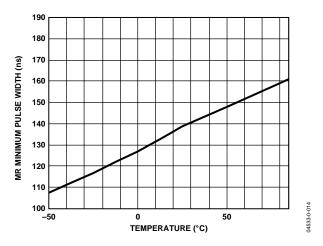


Figure 9. Manual Reset Minimum Pulse Width vs. Temperature

The ADM6384 provides microprocessor supply voltage supervision by controlling the microprocessor's reset input. Code execution errors are avoided during power-up, powerdown, and brownout conditions by asserting a reset signal when the supply voltage is below a preset threshold and by allowing supply voltage stabilization with a fixed-timeout reset pulse after the supply voltage rises above the threshold. If the user detects a problem with the system's operation, a manual reset input is available to reset the microprocessor by means of an external push-button, for example.

RESET OUTPUT

The ADM6384 features an active-low, push-pull reset output. The reset signal is guaranteed to be logic low for $V_{\rm CC}$ down to 1V.

The reset output is asserted when $V_{\rm CC}$ is below the reset threshold ($V_{\rm TH}$) or when $\overline{\rm MR}$ is driven low. Reset remains asserted for the duration of the reset active timeout period ($t_{\rm RP}$) after $V_{\rm CC}$ rises above the reset threshold or after $\overline{\rm MR}$ transitions from low-to-high. Figure 10 illustrates the behavior of the reset outputs.

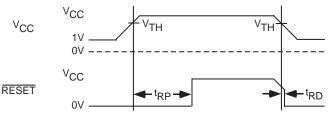


Figure 10. Reset Timing Diagram

MANUAL RESET INPUT

The ADM6384 features a manual reset input ($\overline{\text{MR}}$) which, when driven low, asserts the reset output. When $\overline{\text{MR}}$ transitions from low to high, reset remains asserted for the duration of the reset active timeout period before deasserting. The $\overline{\text{MR}}$ input has a 52 k Ω internal pull-up so that the input is always high when unconnected. An external push-button switch can be connected between $\overline{\text{MR}}$ and ground so that the user can generate a reset. Debounce circuitry for this purpose is integrated on-chip. Noise immunity is provided on the $\overline{\text{MR}}$ input, and fast, negative-going transients of up to 100 ns (typ) are ignored. A 0.1 µF capacitor between $\overline{\text{MR}}$ and ground provides additional noise immunity.

APPLICATION INFORMATION NEGATIVE-GOING V_{CC} TRANSIENTS

To avoid unnecessary resets caused by fast power supply transients, the ADM6384 is equipped with glitch rejection circuitry. The typical performance characteristic in Figure 8 plots V_{CC} transient duration versus the transient magnitude. The curves show combinations of transient magnitude and duration for which a reset is not generated for 4.63 V and 2.93 V reset threshold parts. For example, with the 2.93 V threshold, a transient that goes 100 mV below the threshold and lasts 8 μ s typically does not cause a reset, but if the transient is any bigger in magnitude or duration, a reset is generated. An optional 0.1 μ F bypass capacitor mounted close to V_{CC} provides additional glitch rejection.

ENSURING RESET VALID TO $V_{cc} {=} \ 0 \ V$

Both active-low and active-high reset outputs are guaranteed to be valid for V_{CC} as low as 1 V. However, by using an external resistor with push-pull configured reset outputs, valid outputs for V_{CC} as low as 0 V are possible. For an active-low reset output, a resistor connected between RESET and ground pulls the output low when it is unable to sink current. For the active-high case, a resistor connected between RESET and V_{CC} pulls the output high when it is unable to source current. A large resistance such as 100 k Ω should be used so that it does not overload the reset output when V_{CC} is above 1 V.

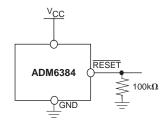
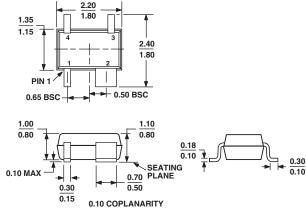



Figure 11. Ensuring Reset Valid to $V_{CC} = 0 V$

OUTLINE DIMENSIONS

FACKAGE OUTLINE CORRESPONDS IN FULL TO EIAJ SC82 EXCEPT FOR WIDTH OF PIN-2 AS SHOWN

Figure 2. 4-Lead Plastic Surface Mount Package [SC70]

(KS-4)

Dimensions shown in millimeters

ORDERING GUIDE Table 1. ADM6384 Ordering Guide

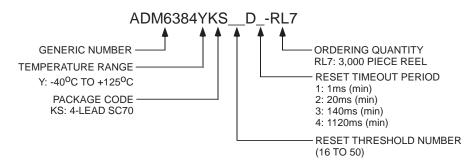


Figure 2. Ordering Code Structure

Model ^{1,2}	Reset Threshold (V)	Reset Timeout (ms)	Temperature Range	Quantity	Package Type	Branding
ADM6384YKS29D1-R7	2.93	1	-40°C to +125°C	3k	SC70-4	NOJ
ADM6384YKS23D3-R7	2.31	140	–40°C to +125°C	3k	SC70-4	NOJ
ADM6384YKS26D3-R7	2.63	140	–40°C to +125°C	3k	SC70-4	NOJ
ADM6384YKS29D3-R7	2.93	140	-40°C to +125°C	3k	SC70-4	NOJ
2	2.95	140	-40 C 10 + 125 C	эк	30/0-4	

¹ Complete the ordering code by inserting reset timeout, and reset threshold suffixes from Table 1.

² Contact Sales for the availability of nonstandard models.

www.analog.com